Deep Similarity Learning for Multimodal Medical Images
نویسندگان
چکیده
An effective similarity measure for multi-modal images is crucial for medical image fusion in many clinical applications. The underlining correlation across modalities is usually too complex to be modelled by intensity-based statistical metrics. Therefore, approaches of learning a similarity metric are proposed in recent years. In this work, we propose a novel deep similarity learning method that trains a binary classifier to learn the correspondence of two image patches. The classification output is transformed to a continuous probability value, then used as the similarity score. Moreover, we propose to utilize multi-modal stacked denoising autoencoder to effectively pre-train the deep neural network. We train and test the proposed metric using sampled corresponding/noncorresponding computed tomography (CT) and magnetic resonance (MR) head image patches from a same subject. Comparison is made with two commonly used metrics: normalized mutual information (NMI) and local cross correlation (LCC). The contributions of the multi-modal stacked denoising autoencoder and the deep structure of the neural network are also evaluated. Both the quantitative and qualitative results from the similarity ranking experiments show the advantage of the proposed metric for a highly accurate and robust similarity measure.
منابع مشابه
Similarity measurement for describe user images in social media
Online social networks like Instagram are places for communication. Also, these media produce rich metadata which are useful for further analysis in many fields including health and cognitive science. Many researchers are using these metadata like hashtags, images, etc. to detect patterns of user activities. However, there are several serious ambiguities like how much reliable are these informa...
متن کاملMyocardial fibrosis delineation in late gadolinium enhancement images of Hypertrophic Cardiomyopathy patients using deep learning methods
Introduction: Accurate delineation of myocardial fibrosis in Late Gadolinium Enhancement on Cardiac Magnetic Resonance (LGE-CMR) has a crucial role in the assessment and risk stratification of HCM patients. As this is time-consuming and requires expertise, automation can be essential in accelerating this process. This study aims to use Unet-based deep learning methods to automate the mentioned ...
متن کاملMedical image retrieval using deep convolutional neural network
With a widespread use of digital imaging data in hospitals, the size of medical image repositories is increasing rapidly. This causes difficulty in managing and querying these large databases leading to the need of content based medical image retrieval (CBMIR) systems. A major challenge in CBMIR systems is the semantic gap that exists between the low level visual information captured by imaging...
متن کاملMedical Image Retrieval: A Multimodal Approach
Medical imaging is becoming a vital component of war on cancer. Tremendous amounts of medical image data are captured and recorded in a digital format during cancer care and cancer research. Facing such an unprecedented volume of image data with heterogeneous image modalities, it is necessary to develop effective and efficient content-based medical image retrieval systems for cancer clinical pr...
متن کاملA multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images
The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015